首页 泵阀知识 化工泵长半径弯头与短半径弯头的不同点,必须收藏!
来源:http://www.chempv.com | 时间:2023-03-23 11:43:32 | 浏览:909

文章摘要:化工泵长半径弯头与短半径弯头的不同点,必须收藏!,由鲸圣泵阀于2023年整理发布。并针对大家关注的重点内容,为大家详细呈现。主要内容为:化工泵长半径弯头与短半径弯头的不同点,必须收藏!...大弯头的位置尽量不选择弯头(当然,根据这种方法有优缺点,优点是:更耐用,泄漏更换频率低,更安全。缺点:主要是成本略高。)

化工泵管道设计中,由于弯头多、复杂,化工泵弯头选择不当可能会影响管道设计功能和生产需要。弯头中有长半径弯头和短半径弯头。如何选择?

化工泵长半径弯头与短半径弯头的不同点,需要收藏!

1、长半径弯头相对较短,因为有短半径,所以有长半径

长半径弯头是一种常用的与管道或管道连接的弯头管件,通常也称为1.5D弯头。在没有特殊要求的情况下,这种弯头基本上选择在管道中,应用广泛,实用性高。长半径弯曲半径大(R半径),成都磨损小于短半径,冲刷强度大大降低,阻力小(类似于早期大倍数弯曲和长半径弯曲的区别,因为弯曲圈越大,各部分影响越小,如直管与弯曲的区别)。

2、与长半径弯头相比,短半径弯头的用量较小,通常称为1D弯头。主要用于船舶工程。虽然用量不大,但长半径弯头不能用于短半径弯头的位置。在什么情况下,短半径弯头通常用于什么情况?一般来说,短半径弯头的位置用于紧急转弯条件,长半径弯头用于空间不允许的情况。

1、长半径弯头和短半径弯头的区别

①两个弯头的区别:同一孔径壁厚和材料两个弯头差异明显,高低,正常工作条件多为长半径弯头,短半径弯头不能使用长半径弯头或紧急工作条件;长半径弯头刷、磨损优于短半径弯头。两个弯头的选择需要根据管道或管道的实际使用情况来确定,因为有些位置可以使用,有些条件只能选择其中一个。

②有许多相似之处,如与管道连接,其功能是改变管道的方向、口径、角度、材料、壁厚等。

2、建议:长半径弯头的位置尽量不选择短半径弯头,大弯头的位置尽量不选择弯头(当然,根据这种方法有优缺点,优点是:更耐用,泄漏更换频率低,更安全。缺点:主要是成本略高。)

化工水泵,调节阀噪音产生原因及解决,超出想象!

噪音是指各种不同频率和振幅声波的随机组合,单位分贝(dB)。通常要求调节阀的噪音低于85dB(即在距离阀门出口下游1m的管道壁向外1m处测得的噪音值)。超过85dB的噪音严重影响交流,并会对听力造成损害。化工水泵使用和阀门调节中,噪音的产生要如何解决呢,先判断产生原因及因素;

1、流体动力学噪音

流体在调节阀中流速过快形成阻塞流。阻塞流是指不可压缩或可压缩流体在流过调节阀时所达到的大流量状态。在固定的入口条件下,当阀前压力保持一定而逐步降低阀后压力时,流经调节阀的流量会增加到一个大极限值,再继续降低阀后压力,流量将不再增加,这个极限流量即为阻塞流。液体阻塞流极易引起闪蒸和气蚀,同时伴有强噪音产生,通常这种噪音达100dB左右,造成影响大。

化工水泵,调节阀噪音产生原因及解决,超出想象!

总之,调节阀由于自身振动及空气动力学原因产生的噪音都很小,并且不可能有效消除,通常将调节阀的噪音控制至85dB以下,主要是针对流体动力学噪音。由于液体阻塞流极易引起闪蒸及气蚀,闪蒸和气蚀会产生噪音,所以控制噪音就需要想办法控制阻塞流的闪蒸及气蚀。

2、自身振动产生的噪音

介质流过调节阀会对阀芯产生冲刷,使阀芯不稳定产生横向运动甚至与设备一起产生共振。由于调节阀使用中自身的振动是难免的,因此这类噪音的产生也不可避免。安装时注意尽量将调节阀正立安装于水平管道上减少由于阀芯不稳而产生的噪音,通常这类噪音值很小,造成影响不大。

3、空气动力学噪音

介质在流经调节阀的缩流断面时,由于缩流断面的阻挡使流路突然改变而出现紊流,同时介质流速发生变化,液体的机械能部分转换为声能而产生的噪音称为空气动力学噪音。由于调节阀在减压时引起液体紊流不可避免,因此空气动力学噪音不能有效消除。通常这类噪音值也很小,造成影响不大。

一、调节阀的噪音控制

1、闪蒸工况调节阀的噪音控制

阻塞流流经调节阀发生闪蒸时,下游产生的气泡会对调节阀的阀芯产生冲刷,受冲刷的阀芯表面会有平滑抛光的外形,此过程伴有大的噪音产生。

从调节阀发生闪蒸的机理(PVC<PV及P2<PV)看,闪蒸是不能消除的,只能想办法降低闪蒸对调节阀的危害,从而降低噪音。常用的方法是对被冲刷区域的材质进行表面硬化处理,表面硬化处理的方法包括三种:

(1)将阀座及阀芯表面进行喷涂处理,可喷涂碳化钨、碳化铬或斯泰莱等硬质合金来提高受冲刷部位的硬度。

(2)将阀座及阀芯表面进行堆焊处理,通常堆焊斯泰莱以提高受冲刷部位的硬度。

(3)将阀座及阀芯表面进行渗氮处理,提高其表面硬度和耐磨性、耐腐蚀性。

通过对调节阀表面硬化处理可提高调节阀硬度,增强调节阀抗闪蒸“冲刷”的能力,相应的噪音也会降低5~10dB。为进一步降低噪音,可以配合使用的方法有:①提高管道壁厚或在管道壁加隔音层。相同口径的调节阀,其管道壁厚每增加一级,测得的噪音值可降低约2dB;②管道外加隔音层实质也是增加管道壁厚减少噪音向环境传递的一种措施;③在调节阀后加装在线消音器,在线消音器可以吸收部分声音能量,并且在阀后形成背压,可有效降低噪音值约25dB。

2、气蚀工况调节阀的噪音控制

阻塞流流经调节阀发生气蚀时,产生的气泡在接触阀门的部位破裂,气泡破裂释放的能量会慢慢地撕裂材料,并在与调节阀接触的部位留下类似于煤渣的粗糙表面。此过程会产生如同砂石流过调节阀时发出的噪音。

气蚀有两种方法来控制:一种是有效防止气蚀发生;二种是不能防止气蚀发生,只是有效降低其危害。

3、不能防止气蚀发生,只是有效降低其危害。

(1)将接触气蚀气泡的阀内表面与气泡隔离开,并硬化处理会受到气蚀冲击的阀芯及阀座表面,同时在阀体出口处加衬套管来保护受气蚀冲击的部位。阀体出口处加衬套管作为补充的阀体设计防止了液体在阀体内壁上的冲撞,保护了调节阀受冲刷部位,同时减弱了部分噪音。

(2)阀后加消音器来分压及分噪音。这种方法实质是将气蚀工况转化为闪蒸工况来处理,所以应用中需同时对阀内件做硬化处理以保护调节阀。

4、有效防止气蚀发生

有三种方法可以达到有效防止气蚀发生。

(1)选用低恢复的调节阀。从气蚀发生的机理(PVC<PV及P2>PV)看,如果选用的阀门PVC>PV,就可以避免气蚀的发生。通常低恢复的调节阀可以做到这点。恢复系数Km高的阀称为低恢复阀。恢复系数Km低的阀称为高恢复阀。每种类型的阀都有自己的Km值,恢复系数Km是用于衡量缩流断面处压力PVC和阀门出口压力P2之间的压力恢复尺度的一个值,其计算公式为:

由此公式可看出,(P1-P2)不变时PVC升高,则Km升高,所以合理选用高Km值(即低恢复)的调节阀使PVC>PV,可避免气蚀发生。同理高恢复阀,指恢复系数Km低的阀,不适合应用于气蚀的工况。

通常球形阀,流开角形阀都是低恢复阀,适宜在有气蚀的工况选用;而球阀、蝶阀都是高恢复阀,不适宜应用于气蚀工况。

(2)采用具有高压多级减压内件的调节阀。

这种调节阀内件具有将通过阀门的压降分成数个较小的压降和确保每个较小压降上PVC>PV的作用,从而可以防止气蚀的产生。由于多级减压分散了流束功率,因此降低了声音转化的效率。

(3)增加具有背压装置的限流孔板分压,确保阀上的PVC>PV,防止气蚀的产生。由于增加了背压装置,使声音频谱发生部分转移,达到降低噪音的目的。

二、液体阻塞流的闪蒸及气蚀

1、液体流经调节阀时压力和流速的关系

液体流经调节阀是液体势能和动能之间的转化,体现在外就是压力和流速之间的转化,即压力降低,流速增加;压力增加,流速降低。此过程遵循能量守恒定律,即液体总能量保持不变。

2、阻塞流发生闪蒸的机理

如果缩流断面处的压力PVC降到液体的饱和蒸汽压力PV以下并且调节阀的出口压力P2没有恢复到液体的饱和蒸汽压力PV之上(即PVC<PV及P2<PV),那么就会产生大量泡沫并保持在阀门的下游,这种现象为闪蒸。闪蒸工况伴有较大噪音产生。

对一固定的液体,在温度一定的情况下,其饱和蒸汽压力为一定值。当压力大于其饱和蒸汽压力时,液体为液态;当压力低于饱和蒸汽压力时,液体为汽态;当压力等于饱和蒸汽压力时,液体为汽、液共存两态。

3、阻塞流发生气蚀的机理

如果缩流断面处的压力PVC降到液体的饱和蒸汽压力以下并且调节阀的出口压力P2恢复到高于其液体的饱和蒸汽压力PV(即PVC<PV及P2>PV),就会有大量的泡沫产生并爆炸,这种现象为气蚀。通常气蚀工况比闪蒸工况产生的噪音更大。

文章总结:以上就是关于“化工泵长半径弯头与短半径弯头的不同点,必须收藏!”的相关全部内容,希望能为关注“化工泵长半径弯头与短半径弯头的不同点,必须收藏!”相关内容的有困惑、有需求的朋友带来资料上的帮助。后期如果还需要了解更多“化工泵长半径弯头与短半径弯头的不同点,必须收藏!”相关知识,欢迎关注鲸圣泵阀资讯,我们会带来更多更优质的化工业及泵阀机械行业优质文章,知识经验及技术分享。

化工泵长半径弯头与短半径弯头的不同点,必须收藏!
《化工泵长半径弯头与短半径弯头的不同点,必须收藏!.doc》
点击下载本文的Word文档,方便收藏和打印
推荐度:
关注下载文档

公众号内获验证码

TAG:
TOP